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ALLOWANCE FOR TEMPERATURE SENSITIVITY

IN THE PROBLEM OF DIAGNOSTICS OF THERMOELASTIC MEDIA

UDC 539.3V. A. Lomazov and Yu. V. Nemirovskii

The problem of determining thermomechanical characteristics of a medium, which are functions
of spatial variables and temperature, from the values of characteristics of thermoelastic processes
measured at the half-space boundary is considered. An approach to solving the problem, based on the
use of the method of perturbations, is proposed.
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Improvement of elements of many devices (from vapor and gas turbines and internal combustion engines
to space engineering) designed for operation under conditions of increasing temperatures and pressures makes it
necessary to study the temperature dependence of characteristics of complex metallic alloys and other structural
materials. Experimental studies of temperature sensitivity involve significant technical difficulties [1], especially in
considering advanced composite materials, which are inhomogeneous and anisotropic.

Possessing a number of advantages important in engineering (having better exploitation qualities than any
of their components), composite materials have also significant drawbacks. For instance, there is often disagreement
between the physicomechanical and chemical properties of composites, which lead to specific types of failure (strat-
ification, local disruptions, violation of adhesion, etc.) [2]. Therefore, the problem of nondestructive control of the
quality of articles becomes urgent both immediately after article fabrication and in the course of its exploitation,
which involves accumulation of microfailures.

The problem of diagnostics is understood as the problem of determining material characteristics on the basis
of experimental information on physical fields arising in the body under the influence of specially chosen external
actions [3].

In the present work, we study the problem of determining the temperature dependence of rigidity character-
istics, density, specific heat, and heat-transfer coefficients for a weakly inhomogeneous and anisotropic thermoelastic
medium on the basis of the parameters of unsteady processes in the body, which are assumed to be known on the
body surface. The problem under study is an inverse problem of mathematical physics [4]. The main difference
of this problem from the formulations of inverse problems considered previously in [5–13] is determining the char-
acteristics of the medium, which are functions of not only spatial variables but also of temperature (temperature
sensitivity). Introduction of the small parameter is related to the nonuniform temperature dependence of the char-
acteristics of the medium. The use of power decompositions of the characteristics of the medium in terms of relative
temperature is similar to the use of the method of perturbations.

1. Propagation of unsteady thermoelastic processes in an inhomogeneous anisotropic half-space R3
+ =

{(x1, x2, x3) | x3 > 0} is described by the equations [14]

Cv θ̇ − (Kijθ,i),j = f0, ρüi − (Cijkluk,l − βijθ),j = fi (i, j, k, l = 1, 2, 3), (1.1)

which are closed by the initial and boundary conditions

θ(x, 0) = ϕ0(x), ui(x, 0) = ϕi(x), u̇i(x, 0) = ψi(x),
(1.2)

Ki3θ,i(x1, x2, 0, t) = p0(x1, x2, t), {Ci3kluk,l − βi3θ}(x1, x2, 0, t) = pi(x1, x2, t).
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Here, the temperature and components of the displacement vector u = (u1, u2, u3) depend on the spatial variables
x = (x1, x2, x3) and time t, and the specific heat Cv, density ρ, and components of the tensors of thermal con-

ductivity Kij , volume temperature expansion βij = Cijkm

θ∫
0

αkm dθ (αkm are the coefficients of linear temperature

expansion), and rigidity Cijkl are assumed to be functions of x and temperature θ. The dots indicate derivatives
in time, and the subscript after the comma corresponds to derivatives with respect to the corresponding coordi-
nate. Summation is performed over repeated subscripts (unless otherwise indicated). The braces contain functions
(expressions) with identical arguments (subscripts).

The problem of diagnostics considered in the present work implies determining the quantities
{Cv, ρ,Kij , βij , Cijkl}(x, θ) from several types of problems of the form (1.1), (1.2) for N types of heat-force loading
[after substitution of uni → ui, {ϕr, ψi, pi, fi}n → {ϕr, ψi, pi, fi} (i = 0, 1, 2, 3; r = 1, 2, 3; n = 1, 2, . . . , N) into (1.1)
and (1.2)], based on the additional information

θn(x1, x2, 0, t) = χn(x1, x2, t), uni (x1, x2, 0, t) = χni (x1, x2, t),
(1.3)

{Ki3, βi3, Ci3kl}(x1, x2, 0, θn) = {Ki3, βi3, Ci3kl}0 (i, k, l = 1, 2, 3),

which is assumed to be obtained by measurements. The number N corresponding to the number of tests with
different types of heat-force loading depends on the type of anisotropy of the medium under study (number of sought
functions). In what follows, we assume that the medium considered is weakly inhomogeneous and anisotropic, i.e.,
the quantities |ρ − ρ0|/ρ0, |Cv − C0

v |/C0
v , |Kij −K0

ij |/K0, and |Cijkl − C0
ijkl|/λ0 have the order of smallness O(ε)

(0 < ε � 1); the zero superscript indicates the characteristics of a certain homogeneous isotropic temperature-
insensitive control medium; hence, we have K0

ij = K0δij , β0
ij = β0δij , and C0

ijkl = λ0δijδkl + µ0(δikδjl + δilδjk).
Here λ0 and µ0 are the Lamé coefficients, δij is the Kronecker delta, and ρ0, C0

v , K0, λ0, and µ0 are constants.
Weak inhomogeneity and anisotropy of thermomechanical properties of the material may be caused, for instance, by
technological actions. Under irradiation of metals, Young’s modulus of copper changes by 10–15%, Poisson’s ratio
remains almost unchanged, whereas the yield strength increases severalfold. Determining, within the framework
of the diagnostics problem, regions with deviation of thermomechanical characteristics of the material and, thus,
identifying zones with the critical level of radiative failures, we can evaluate the strength margin of an article.

Let us compare a thermoelastic process {θ, u}n(x, t) to a similarly initiated process {θ, u}0n(x, t)
proceeding in the homogeneous isotropic temperature-insensitive control medium. After the substitution
{Cv, ρ,Kij , βij , Cijkl}0 → {Cv, ρ,Kij , βij , Cijkl}(x, θ), the quantities {θ, u}0n(x, t) are described by relations (1.1)
and (1.2). We assume that temperature sensitivity, weak inhomogeneity, and anisotropy of the examined medium
have a small effect on the quantitative characteristics of the processes excited in the medium. Thus, on the half-space
surface, we have

θn(x1, x2, 0, t) = θ0n(x1, x2, 0, t) + εθ1n(x1, x2, 0, t) = χ0n(x1, x2, t) + εχ1n(x1, x2, t),

uni (x1, x2, 0, t) = u0n
i (x1, x2, 0, t) + εu1n

i (x1, x2, 0, t) = χ0n
i (x1, x2, t) + χ1n

i (x1, x2, t),

and

‖θ0n(x1, x2, 0, t)‖C2 ∼ O(‖θ1n(x1, x2, 0, t)‖C2),

‖u0n
i (x1, x2, 0, t)‖C2 ∼ O(‖u1n

i (x1, x2, 0, t)‖C2).

We assume that the sought characteristics of the medium under study can be represented as a converging
power series in ε and θ0n(x, t) with coefficients depending on the spatial coordinates x:

{Cv, ρ,Kij , βij , Cijkl}(x) = {Cv, ρ,Kij , βij , Cijkl}0

+ ε
∞∑
s=0

εs(θ0n)s{Cv, ρ,Kij , βij , Cijkl}s+1(x), (1.4)

and the characteristics of thermoelastic processes in the medium are analytical functions of the small parameter ε:

{θ, u}n(x, t) = {θ, u}0n(x, t) + ε
∞∑
s=0

εs{θ, u}sn(x, t).
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In accordance with the method of perturbations, the assumptions adopted allow us to pass from relations
(1.1)–(1.3) to the equations

C0
v θ̇

0n − (K0
ijθ

0n
,i ),j = fn0 (i, j, k, l = 1, 2, 3; n = 1, . . . , N),

ρ0ü0n
i − (C0

ijklu
0n
k,l − β0

ijθ
0n),j = fni , ε(C0

v θ̇
1n − (K0

ijθ
1n
,i ),j) = ε(−C1

v θ̇
0n + (K1

ijθ
0n
,i ),j),

ε(ρ0ü1n
i − (C0

ijklu
1n
k,l − β0

ijθ
1n),j) = ε(−ρ1ü0n

i + (C1
ijklu

0n
k,l − β1

ijθ
0n),j),

ε2(C0
v θ̇

2n − (K0
ijθ

2n
,i ),j) = ε2(−C2

vθ
0nθ̇0n + (K2

ijθ
0nθ0n

,i ),j − C1
v θ̇

1n + (K1
ijθ

0n
,i ),j),

(1.5)
ε2(ρ0ü2n

i − (C0
ijklu

2n
k,l − β0

ijθ
2n),j) = ε2(−ρ2θ0nü0n

i + (C2
ijklθ

0nu0n
k,l − β2

ijθ
0nθ0n),j

− ρ1ü1n
i + (C1

ijklu
1n
k,l − β1

ijθ
1n),j),

εm(C0
v θ̇
mn − (K0

ijθ
mn
,i ),j) = εm(−Cmv θ0nθ̇0n + (Km

ij θ
0nθ0n

,i ),j − Cmv (θ0n)m−1θ̇1n

+ (Km
ij (θ0n)m−1θ1n

,i ),j − . . .− C1
v θ̇

(m−1)n + (K1
ijθ

(m−1)n
,i ),j),

εm(ρ0ümni − (C0
ijklu

mn
k,l − β0

ijθ
mn),j) = εm(−ρmθ0nü0n

i + (Cmijklθ
0nu0n

k,l − βmij θ0nθ0n),j

− ρ1ü1n
i + (C1

ijklu
(m−1)n
k,l − β1

ijθ
(m−1)n),j)

closed by the initial and boundary conditions

θmn(x, 0) = δ0mϕ
n
0 (x), umni (x, 0) = δ0mϕ

n
i (x), u̇mni (x, 0) = δ0mψ

n
i (x),

m∑
s=0

Km−s
i3 θs,i(x1, x2, 0, t) = δ0mp

n
0 (x1, x2, t), (1.6)

m∑
s=0

{Cm−si3kl u
s
k,l − βm−si3 θs}(x1, x2, 0, t) = δ0mp

n
i (x1, x2, t);

θmn(x1, x2, 0, t) = δ0mχ
0n(x1, x2, t) + δ1mχ

1n(x1, x2, t),

umni (x1, x2, 0, t) = δ0mχ
0n
i (x1, x2, t) + δ1mχ

1n
i (x1, x2, t), (1.7)

{Ki3, βi3, Ci3kl}m(x1, x2, 0) = δ0m{Ki3, βi3, Ci3kl}0 (i, k, l = 1, 2, 3).

In what follows, the characteristics of the control medium {Cv, ρ,Kij , βij , Cijkl}0 are assumed to be known, i.e., the
problem of diagnostics implies refinement of the properties of the medium under study. Note, the initial problem
of determining Cv, ρ, Kij , βij , Cijkl, θn, and uni from N relations of the form (1.1)–(1.3) is nonlinear, since they
contain products of the sought functions (characteristics of the medium and thermoelastic processes). In addition,
the dependence of the characteristics of the medium on one of the sought functions of temperature is assumed to be
nonlinear. In this sense, the transition from (1.1)–(1.3) to (1.5) is similar to the linearization procedure based on
the method of perturbations and used to solve nonlinear problems of thermoelasticity of inhomogeneous bodies [4].

The structure of relations (1.5)–(1.7) allows us to find consecutively the expansion coefficients in the tem-
perature dependence of the characteristics of the medium {Cv, ρ,Kij , βij , Cijkl}m beginning from m = 1.

We give the algorithm for calculating the quantities {Cv, ρ,Kij , βij , Cijkl}m(x) and {θ, u}mn(x, t). Note, the
first matrix equation (for m = 0) in (1.4) does not contain the unknowns {Cv, ρ,Kij , βij , Cijkl}m (m = 1, 2, . . .) and,
together with conditions (1.6) considered for m = 0 forms a series of initial-boundary problems of the second kind
[with respect to the functions {θ, u}0n(x, t), n = 1, 2, . . . , N ] that describe propagation of thermoelastic waves in a
homogeneous isotropic temperature-insensitive half-space. In what follows, we assume that the solutions of these
problems are known and have the form {θ, ui}0n(x, t) = exp (−ant){g0, gi}n(x), an > 0 (no summation in terms
of n is performed), which imposes restrictions on the functions {f0, fi, ϕ0, ϕi, ψi, p0, pi}n, i.e., on the conditions of
initiation of thermoelastic processes in the medium under study.
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Note, the particular form of the functions {f0, fi, ϕ0, ϕi, ψi, p0, pi}n can be obtained by the direct substitution
of {θ, ui}0n(x, t) into (1.1)–(1.3) after the replacement {Cv, ρ,Kij , βij , Cijkl}0 → {Cv, ρ,Kij , βij , Cijkl}(x, θ). The
monotonic change in temperature in the control medium corresponds to the physical assumptions made previously.

2. In accordance with (1.5)–(1.7), for the functions {Cv, ρ,Kij , βij , Cijkl, θ
n, un}1, we have

C0
v θ̇

1n − (K0
ijθ

1n
,i ),j = −C1

v θ̇
0n + (K1

ijθ
0n
,i ),j ; (2.1)

ρ0ü1n
i − (C0

ijklu
1n
k,l − β0

ijθ
1n),j = −ρ1ü0n

i + (C1
ijklu

0n
k,l − β1

ijθ
0n),j ,

θmn(x, 0) = 0, umni (x, 0) = 0, u̇mni (x, 0) = 0, {K0
i3θ

1n
,i +K1

i3θ
0n
,i }(x1, x2, 0, t) = 0, (2.2)

{C0
i3klu

1n
k,l − β0

i3θ
1n + C1

i3klu
0n
k,l − β1

i3θ
0}(x1, x2, 0, t) = 0,

θ1n(x1, x2, 0, t) = χ1n(x1, x2, t), u1n
i (x1, x2, 0, t) = χ1n

i (x1, x2, t),

{Ki3, βi3, Ci3kl}1(x1, x2, 0) = 0 (i, k, l = 1, 2, 3).

The problem of determining these functions is similar to the linearized problem of diagnostics [10–12]; therefore,
we give only the schematic of its solution. The solution of the problem is divided into two stages: 1) determination
of {θ, ui}1n(x, t) (n = 1, N); 2) reconstruction of {Cv, ρ,Kij , βij , Cijkl}1(x) from the right sides of the matrix
equations (2.1) and (2.2).

Stage 1. We apply the operator L = ∂t + anI (I is the unit operator) to Eqs. (2.1) and (2.2); after that, for
each fixed n with respect to new unknowns T = Lθ1n and vi = Lu1n

i , we obtain

C0
v Ṫ − (K0

ijT,i),j = 0; (2.3)

ρ0v̈i − (C0
ijklvk,l − β0

ijT ),j = 0; (2.4)

vi(x, 0) = 0; (2.5)

K0
i3T,i(x1, x2, 0, t) = 0, T (x1, x2, 0, t) = Lχ1n(x1, x2, t); (2.6)

C0
i3klvk,l(x1, x2, 0, t) = 0, vi(x1, x2, 0, t) = Lχ1n

i (x1, x2, t) (i = 1, 2, 3). (2.7)

Equations (2.3) and (2.4) are similar to the equations of thermoelasticity for a homogeneous isotropic
medium, since the quantities {Cv, ρ,Kij , βij , Cijkm}0 entering into these equations as coefficients correspond to
a homogeneous isotropic medium. Nevertheless, in our case, they are used to find the auxiliary functions T and vi.
Since K0

ij = K0δij , then Eq. (2.1) with the boundary conditions (2.6) is the Cauchy problem with data on the
non-three-dimensional manifold [4].

The boundary conditions (2.7) with allowance for (2.4) make it possible to find the functions {U,U,3,W ,W,3}
for x3 = 0 [U = div v and W = (W1,W2,W3) = rotv]. It follows from condition (2.5) that the initial conditions for
these functions are homogeneous: U(x, 0) = 0 and W (x, 0) = 0. Applying the operators div and rot to Eqs. (2.4),
we obtain

ρ0Ü − (λ0 + 2µ0)∆U = −β0∆T, ρ0Ẅ − µ0∆W = 0.

Thus, for U and three components of the vector-function W (only two of which are independent), we
obtain a wave equation, a homogeneous initial condition, and two boundary conditions for x3 = 0, which form a
nonhyperbolic Cauchy problem (Cauchy problem with data on the non-three-dimensional manifold) for the wave
equation. This problem, as problem (2.3), (2.6), is classically ill-posed in the class of functions Cn(R3

+ × R+): its
solution exists for not all Cauchy data (for x3 = 0) of this class. This makes the problem of diagnostics as a whole
ill-posed too. It should be noted that the problems considered are classically (according to Hadamard) well-posed
in the class of analytical functions. In particular, if the boundary values of the sought functions admit expansions
into a series in eigenfunctions of the Laplace operator as representations, then the solution can be obtained by the
Fourier method of division of variables. Finding U , W1, and W2, we can reconstruct v = (v1, v2, v3); then, from the
equations

θ̇1n + anθ
1n = T, u̇1n

i + anu
1n
i = vi

149



using the homogeneous initial conditions, we can determine {θ, ui}1n(x, t). The first-stage calculations are performed
N times.

Stage 2. Knowing θ1n and u1n
i , we can find the right sides of Eqs. (2.1) and (2.2), which, in accordance

with the adopted assumption, have the form exp (−ant){F 1n
0 , F 1n

1 , F 1n
2 , F 1n

3 }(x). Thus, the second stage implies
determination of {Cv, ρ,Kij , βij , Cijkl}1(x) from the equations

anC
1
vg
n
0 + (K1

ijg
n
0,i),j = F 1n

0 , −(an)2ρ1gni + (C1
ijklg

n
k,l − β1

ijg
n
0 ),j = F 1n

i (i = 1, 2, 3) (2.8)

and homogeneous boundary conditions with respect to {Ki3, βi3, Ci3kl}1 from (2.2). The number N (number of
different test regimes) is chosen such that the number of independent scalar equations of the form (2.8) is equal to
the number of independent unknowns {Cv, ρ,Kij , βij , Cijkl}1(x).

In the case of the general-form anisotropy, the tensor of rigidity coefficients Cijkl contains 21 independent
components, and the tensors of thermal conductivity coefficients Kij and volume temperature expansion coeffi-
cients βij contain six independent components each. In this case, the total number of unknowns is 35. The high
order hinders the solution of the system of the form (2.8). Nevertheless, consideration of special types of anisotropy
and additional functional relations between thermomechanical characteristics of the material and also an appropri-
ate choice of the functions {g0, g1, g2, g3}n (test conditions) allow one sometimes to reduce the order and simplify
the solution.

3. To determine the quantities {Cv, ρ,Kij , βij , Cijkl, θ
n, un}2 from Eqs. (1.5)–(1.7), we have

C0
v θ̇

2n − (K0
ijθ

2n
,i ),j = −C2

vθ
0nθ̇0n + (K2

ijθ
0nθ0n

,i ),j + [−C1
v θ̇

1n + (K1
ijθ

1n
,i ),j ],

(3.1)

ρ0ü2n
i − (C0

ijklu
2n
k,l − β0

ijθ
2n),j = −ρ2θ0nü0n

i + (C2
ijklθ

0nu0n
k,l − β2

ijθ
0nθ0n),j

+ [−ρ1ü1n
i + (C1

ijklu
1n
k,l − β1

ijθ
1n),j ].

The initial conditions are

θ2n(x, 0) = 0, u2n
i (x, 0) = 0, u̇2n

i (x, 0) = 0, (3.2)

and the boundary conditions are

{K2
i3θ

0
,i + [K1

i3θ
1
,i] +K0

i3θ
2
,i}(x1, x2, 0, t) = 0,

(3.3)

{C2
i3klu

0
k,l + [C1

i3klu
1
k,l] + C0

i3klu
2
k,l}(x1, x2, 0, t) = 0;

θ2n(x1, x2, 0, t) = 0, u2n
i (x1, x2, 0, t) = 0 (i = 1, 2, 3); (3.4)

{Ki3, βi3, Ci3kl}2(x1, x2, 0) = 0 (i, k, l = 1, 2, 3). (3.5)

In relations (3.1)–(3.5), the square brackets contain expressions with already known (see Sec. 2) functions. The
sought solution {θn,un}2(x, t) is represented in the form {θn,un}2 = {θn,un}2∗ + {θn,un}2∗∗, where {θn,un}2∗∗
satisfies Eqs. (3.1)–(3.3) whose right sides are the expressions in square brackets. The problem of determining
{θn,un}2∗∗ consists of several initial-boundary problems of dynamic thermoelasticity of the second kind, which
describe propagation, in the half-space, of thermoelastic waves initiated by the action of mass forces, heat sources,
and heat-force loading on the boundary [14]. After finding {θn, un}2∗∗, the problem of determining {θn,un}2∗(x, t),
and then {Cv, ρ,Kij , βij , Cijkl}2(x) from Eqs. (3.1)–(3.4), which do not contain bracketed expressions, is similar to
problem (2.1), (2.2). In this case, however, the operator L has the form L = ∂t + 2anI.

Thus, it is possible to obtain consecutively all terms of expansions of the characteristics of thermoelastic
processes {θn,un}m(x, t) used for diagnostics and, which is more important within the framework of the present
problem, coefficients of expansion of the characteristics of the medium under study {Cv, ρ,Kij , βij , Cijkl}m(x) into
a series in powers of temperature, which depend on spatial coordinates.

4. As an example, we consider the simplest case where it is known that the examined medium is isotropic,
and its characteristics depend only on the coordinate x3 (distance to the half-space surface). Then, for conditions of
initiation of thermoelastic waves independent of x1 and x2, the problem of diagnostics becomes two-dimensional: the
characteristics of the medium depend on the spatial coordinate x3 and temperature θ, whereas the characteristics
of thermoelastic processes depend on x3 and time t.
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The number of characteristics of the medium to be found decreases to six: {Cv,K, ρ, λ, µ, β}(x3, θ); therefore,
we assume that N = 2. For m = 1, relations (2.1) and (2.2) take the form

C0
v θ̇

1n −K0θ1n
,ii = −C1

v θ̇
0n + (K1θ0n

,i ),i (n = 1, 2, k = 1, 2, i = 1, 2, 3),

ρ0ü11
k − µ0∆u11

k = −ρ1ü01
k + (µ1u01

k,3),3, (4.1)

ρ0ü1n
3 − (λ0 + 2µ0)∆0u1n

3 − β0θ1n
,k = −ρ1ü0n

3 + (µ1u0n
3,3),3 − (β1θ0n),3.

Relations (4.1) are closed by the initial conditions

θ1n(x, 0) = 0, u11
k (x, 0) = 0, u1n

3 (x, 0) = 0, u̇11
k (x, 0) = 0, u̇1n

3 (x, 0) = 0 (4.2)

and the boundary conditions

{K0θ1n
,i +K1θ0n

,i }(x1, x2, 0, t) = 0,

{µ0(u11
k,3 + u11

3,k) + µ1(u01
k,3 + u01

3,k)}(x1, x2, 0, t) = 0 (k = 1, 2),

{λ0(u1n
1,1 + u1n

2,2) + (λ0 + 2µ0)u1n
3,3 − β0θ1n + λ1(u0n

1,1 + u0n
2,2)

+ (λ1 + 2µ1)(u0n
3,3)− β1θ0n}(x1, x2, 0, t) = 0, (4.3)

θ1n(x1, x2, 0, t) = χ1n(x1, x2, t), u11
k (x1, x2, 0, t) = χ11

k (x1, x2, t) (k = 1, 2),

u1n
3 (x1, x2, 0, t) = χ1n

3 (x1, x2, t);

{K,λ, µ, β}1(x3) = 0. (4.4)

Thus, it is necessary to perform two “tests”: the temperature and three components of the displacement
vector are measured in the first test, and only the temperature and the normal component of displacement are
measured in the second test.

The specific feature of the case considered is the fact that the assumption on spatial one-dimensionality (de-
pendence on x3 only) of inhomogeneity distribution makes the problem one-dimensional at the first stage and, thus,
significantly simplifies reconstruction of the characteristics of thermoelastic processes used for diagnostics. In this
problem the temperature and strain fields are not related; in addition, longitudinal and transverse waves propagate
independently. Therefore, there is no need to separate the divergent and rotor components of the displacement vec-
tor. This assumption also simplifies the problem at the second stage, since the coefficients of expansions of the charac-
teristics of the medium in powers of θ also depend on x3 only. In this case, for {g0, g1, g2, g3}n = {g0, g1, g2, g3}n(x3)
[for further simplification, we assume that g1

0(x3) = g2
0(x3), g1

1(x3) = g1
2(x3), g2

1(x3) = g2
2(x3) = 0], the solution of

the problem at the second stage is found from a system of six ordinary linear differential equations with variable
coefficients

anC
1
vg
n
0 + (gn0,3K

1),3 = F 1n
0 (n = 1, 2); (4.5)

−(a1)2ρ1g1
k + (µ1g1

k,3),3 = F 11
k (k = 1, 2); (4.6)

−(an)2ρ1gn3 + ((λ1 + 2µ1)gn3,3),3 − (β1gn0 ),3 = F 1n
3 (n = 1, 2). (4.7)

It should be noted that system (4.5)–(4.7) is divided into three subsystems. From Eqs. (4.5) for n = 1, 2, we find

K1(x3) =
1
g1

0,3

x3∫
0

(a2F
11
0 (ξ)− a1F

12
0 (ξ)) dξ,

C1
v (x3) =

1
a1g1

0

(
F 11

0 −
x3∫
0

(a2F
11
0 (ξ)− a1F

12
0 (ξ)) dξ

)
.
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The equations of system (4.6) for k = 1, 2 allow us to find

µ1(x3) =
1
g1

1,3

x3∫
0

((a2)2F 11
1 (ξ)− (a1)2F 11

2 (ξ)) dξ,

ρ1(x3) =
1

(a1)2g1
1

(
F 11

1 +

x3∫
0

((a2)2F 11
1 (ξ)− (a1)2F 11

2 (ξ)) dξ
)
.

Equations (4.7) for n = 1, 2, with allowance for the already found function µ1(x3), yield

λ1(x3) = −2µ1(x3) +
1

g1
3,3 − g2

3,3

x3∫
0

(F 11
3 (ξ)− F 12

3 (ξ) + (a1)2ρ1(ξ)g1
3(ξ)− (a2)2ρ1(ξ)g2

3(ξ)) dξ,

β1(x3) =
1
g1

0

( x3∫
0

(F 11
3 (ξ) + (a1)2ρ1(ξ)g1

3(ξ)) dξ − (λ1 + 2µ1)g1
3,3

)
.

The remaining coefficients of expansions of the characteristics of the examined medium {Cv,K, ρ, λ, µ, β}m(x3)
(m = 1, 2, . . .) into a series in powers of temperature are found in a similar manner.

Let us give some examples of numerical calculations. In relations (4.1)–(4.3), we used the dimensionless
variables C̄v = Cv/C

0
v , K̄ = K/K0, ρ̄ = ρ/ρ0, λ̄ = λ/µ0, µ̄ = µ0, β̄ = β/β0, x̄3 = x3/a, t̄ = tC0

v/a, θ̄ =
θ/T , ūi = ui/a, {θ̄, ū1, ū2, ū3}1(0, t̄ ) = {0, 0.3 exp (−t̄ ) − 0.1 exp (t̄ ) − 0.2 exp (−2t̄ ), 0, 0}, {K,λ, µ, β}(0) = 0,
{g0, g1, g2, g3}1(x̄3) = {exp (−x̄3), cos x̄3, cos x̄3, sin x̄3}, a1 = 1, and a2 = 2. In expansion (1.4), we took into
account three terms of the series, since the terms corresponding to higher powers of θ do not exert any significant
effect on the solution in our example. Figure 1 shows the shear modulus µ/µ0 (µ0 is the shear modulus of the
homogeneous control medium) as a function of the spatial variable x̄3 and relative temperature θ̄. The behavior of
the shear modulus (as well as other thermomechanical characteristics) with increasing temperature offers additional
information on structural inhomogeneity of the material, which is the ultimate objective of diagnostics.
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